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Statistical properties of the cumulative phase of electromagnetic radiation
transmitted through a waveguide with random scatterers
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We calculate the probability distribution function and the average of the cumulative phase of electromag-
netic radiation transmitted through the waveguide with randomly positioned dielectric scatterers. The average
phase exhibits a crossover from linear to power-law behavior as a function of frequency. A detailed compari-
son with experimental results is made and a good agreement is found. Our results are consistent with the
well-known observation that the scattering mean free path is of the order of the size of scatterers.
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INTRODUCTION transverse dimension of the waveguidlee width or height

in the case of a rectangular waveguide and the radius in the
The electromagnetic wave transmitted through randontase of a cylindrical tubec is the speed of the wave inside

media is fully characterized by two equally important param-the empty waveguide) is a positive integer number, ang
eters: amplitude and phase. While properties of the wave'ss g parameter dependent up on the geometry of the wave-
amplitude and its intensity have acquired considerable attenyuide. In general, there are an infinite number of such eigen-
tion over the past decad@—23|, the phase has remained an mpdes in the empty waveguide, even though some of them
“unexplored” quantity. Only recently have studies of statis- are suppressed due to symmetry. The incoming electromag-

tics of the cumulative phase in microwave measurementsqtic radiationplane-wave or point-sourgef wavelength\
been reportefl22,23. It has been shown there that the phase

) t onl tral in th derlvi lik v of th can be expanded in the complete set of eigenmodes thus
IS not only central In the underlying wavelike property ot the ensuring that all of these modes contribute to the wave trans-
transmitted signal as interferenf24], but that it may give

. o ort; \ is the characteristic transport length in this case. Ran-
direct access to numerous indispensable transport pararg-

eters. Among those, to name a few, are the density-of-state éom sc?tterers, when place_d n t?ﬁ Wr?vegwld €, may
phase, and group velocities. Following the density of phas normalize some parameters in E). while the total num-
distribution as a function of sample thickness and frequency?" ©f €igenmodes does not change. However, transport
one can also study the transition from the ballistic to theProperties of the wave are seriously altered in the presence of
diffusive regime. To advance these investigations further anf§ndom scatterers. It is well knowi—5] that as the wave
to fully understand the underlying physics behind the func{ravels through a random medium its coherent part decays
tional behavior of the average phase and phase distributiofXxPonentially over a distance of the order of scattering mean
function found in the experiment, an analytical description offree pathl due to successive scattering. At the same time the
the phase statistics is needed. To our knowledge, no sudAcoherent part builds up gradually and propagates diffu-
calculations have been given in the existing literature. Thesively. Since its phase is completely random and averages
purpose of the present work is to provide analytical analysi®ut to zero, the total average phase consists only of the su-
of the phase statistics of the electromagnetic radiation trangerposition of phases of wavelets forming the coherent com-
mitted through a waveguide with randomly positioned di-ponent. However, the majority of the eigenmodes contribut-
electric scatterers. ing to the coherent transport are “evanescent,” i.e., they
The general problem of finding the statistical characterisexist entirely within a thin layer of the order of sevetd
tics of the phase is rather complex theoretically. It is, how-from the input face of the waveguide. As the signal propa-
ever, possible to reformulate it in terms of a solvable modelgates deeper inside the waveguide, most of the “coherent”
To accomplish this goal, let us look at the transport of aneigenmodes saturate and only a limited number of them exist
electromagnetic wave with longitudinal component of waveat the output face of the waveguide. These considerations
vectork, propagating in a waveguide of lendth A distinc-  have recently been tested using numerical simulatj@6
tive property of the waveguide of any geomefrgctangular, Wwhere it has been found that only a single coherent mode
cylindrical, etc) is the existence of a discrete set of “trans- survives at distances from the input surface much greater

verse” (TE and TM eigenmode$25]: thanl. An important conclusion appropriate at this point is
) , that under such conditions the waveguide of the length much
(g) K2 ( m ) ) greater than the scattering mean free path effectively behaves
c| R/’ as a quasi-one-dimensional random system.

An additional support of the conclusion made above
wherew is the angular frequency of theth mode,R is the  comes from some specific features of the experimental pro-
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cedure. In a typical experiment, measurements are performexhd the amplitude of the correlations=e?d, where ()
over the frequency window with width of the order of 20—30 means averaging over disorder. After employing the follow-
GHz. It follows from Eq.(1) that only a finite number of ing substitution:

modes can exist in the restricted frequency interval. There-

fore, if a detector is placed at the output face of the wave- 9E(X, w) — E(x,0)f(X,)

guide or even outside of the random media, it captures the ax e @)

signal comprised of the finite number of transverse eigen-

modes. E(X,w)=Ce/Ix fxe) = CcgPlo) (4

In the present work we apply the quasi-one-dimensional . o ]
approximation for the electromagnetic wave transport in théEd- (2) reduces to the first-order Ricatti equation for the
waveguide with randomly positioned dielectric scatterers tgunction f(x,w),
obtain exact analytical results for the total average phase and df(x,0)
the density of phase distribution. Our method is to perform a 7
direct mapping of the quasi-one-dimension@uasi-1D dx
Maxwell equation onto the one-dimensional Scinger
equation with a continuous random potential. The Schro : L " "
dinger equation itself can be converted to the stochastig1e analog _Of the s_patlal denva_tlve of the 'OC?" phase the
equation for the spatial derivative of the local phase fromVaveé acquires while propagating to a coordinatén the
which, finally, the general differential equation for the den-fandom medium, wherea(w) can be viewed as a “total
sity of the phase distribution function is derived. It is solved©" “cumulative phase.” In order to proceed with further cal-
explicitly for the total average phase and the density of thé:ylatlons, we note that EQS) IS ana!ogous to the 1D Schro
phase distribution in the limiting case when both of theselinger equation for a spinless particle of masand energy
parameters are spatially homogeneous. A thorough compark Propagating in the random potenthd(x),
son between analytical results and experimental findings is ~
included. df(x.E)

dx

+f2(x, ) = —k3e(x). (5)

From Eqgs.(4) we can conclude thaft(x,w) is nothing but

+2(x,E)=2[V(x)—E], (6)

METHOD OF CALCULATION where the same transformations as given by Edshave

Let us start with a cylindrical tube of lengthand radius  been performed. In E¢6) E=4mE, V(x)=4mV(x), and
R, filled with randomly positioned dielectric scatterers. ThePlanck’s constant is set to unity. An important consequence
cylinder is a preferred geometry here since it is used in mosgan be deduced from this analogy. It follows from quasiclas-
laboratory setups. Our results are, nevertheless, applicable ics[27], that the “number of statesN(E), with the energy
a kind of geometry(rectangular, etg. Scatterers are consid- E and energy densitg(E), is equal to
ered to be pointlike, which leads to the transport mean free 1 1
path being equal to the scattering mean free path in our case. _ T _ -
This is incorrect when the size of scatterdrs of the order N(E)_f dEp(B)=5 j dx Kx)=52A D)y, (7)
of \. In the present work, however, we are interested in a ) )
frequency range for which the conditiors>d is always sat- Where( )y means averaging with respect to the random po-
isfied. The plane electromagnetic wave impinges normally atential. Therefore, the cumulative phase of the classical wave
the front surface of the tube and the transmitted signal i®ropagating in the 1D random system, averaged with respect
detected at its back surface. Following the above-mentionet random fluctuations, is directly proportional to the “num-
considerations, we assume that only a finite number oPer of states” in the corresponding quantum-mechanical
“transverse” eigenmodes is allowed in the tube and, there{QM) problem. Since it is known how to calculate the den-
fore, our problem is reduced to the propagation of a wave ir$ity of states and the phase distribution for the 1D Schro
a quasi-1D random system. In order to simplify the calcula-dinger problem with random potentig28], our next step is
tion even further, we restrict ourselves to the simplest case df formulate our problem in terms of its QM counterpart.
a single mode in the waveguide. Under these conditions, thErom the direct comparison of Eq&) and(6) we have
Fourier transform of the amplitude of the electfinagneti¢

iyv) — 2
field £(x,t) satisfies the wave equation V(x)=—3kde(x),
& E=3kge, ®
—2+k§e(x)]g(x,w)=o, 2
X while the potential-potential correlator takes the following

whereko= w/c. The randomness of the system is modeledfor
by the “dlelt_ectrlc” constant _e(x):e+ d0€(X), where € (VOX)V(X"))=L1kEAS(x—x")=D(ko) 8(x—x').  (9)
=¢€(1—v), v is the filling fraction, ande represents the av-
erage “dielectric” properties of the medium. The fluctuating An important difference between the propagation of Schro
part of the “dielectric constant”de(x) is assumed to be a dinger particles and classical waves is that the latter occurs in
Gaussian random variable with a zero mean: the “energy”-dependent potential, as follows from EB).
This peculiarity leads to completely different statistical prop-
(8e(x))=0, {(Je(x)de(x")y=A8(x—x"), €)) erties of the phase of the classical waves as compared to the



3576 A. BULATOV, D. LIVDAN, AND JOSEPH L. BIRMAN 57

Schralinger particles. One should note that the states of the Co 1 8 -
electromagnetic field are physically characterized by the P(§)=7GXF{—W s TES }

wave vectork, rather than the “energy’E given by Egs. 0

(8). However, the number of states defined by Eqg. is £ 1 ud

invariant with respect to the change of variab(@s In other X f_mdu ex;{ D (ko) 5" Eu (16)

words, the number of states as a functionkgfcan be ob-

tained from the result foN(E) by means of the simple sub- Making use of Eqgs(14) and (15), we finally arrive at the
stitution into Eqg. (8) in the form N(E) N(E(ko)) AS will f0||OW|ng express|0n fo((I)(E))
be clear below, we only use the invariant quanNyE) in

our analysis of the phase distribution. Therefore, we can ex- - V87D (ko)L

press the results in terms & and make use of the QM (P(E))= 3 17

analogy. o d_u exd — L Y. E

Instead of solving Eq.(6) directly for the *“phase” \/a D (ko)
f(x,E), we use it to derive the equation for the “density of
phase distribution,” We would like to mention that the integral in the denomina-
- tor of Eq. (17) can be calculated exactly, with the result of

P(x,&)=(5(f(x,E)—&))7. (10 integration expressed in terms of hypergeometric functions.

- The form of Eq.(17) is, however, more convenient for both
Therefore P(x,£)d¢ is the probability thaf(x,E) liesinthe  the analytical estimation of limiting cases and numerical cal-
interval & £+d¢£. After taking a partial derivative with re- culations. Two important limiting cases, long-wavelength
spect to the coordinate from P(x,&) and using Furutsu- and short-wavelength, can be distinguished. In the case of

Novikov's theorem 28], long wavelengthglow frequenciel E— 0, k,— 0, where the
wavelength is much larger than the scale of inhomogeneities,
(A(X)B(X))p= jdx (A()A(X )>< B(x )> (11)  disorder should not have a significant impact on the cumula-
OA(X") tive phase, since waves hardly get scattered before leaving

the waveguide. We obtain the linear growth of the “average

we obtain the desired equation fB(x, ), cumulative phase” with a frequenay,

aP(x,g) Jd
X (?5

&2+ 2E+2D(Ky)

’ )P(x kf)} (®(v))=2ekoL o v, (18)

23
(12) The numerical coefficient in Eq16) is indeed independent

This is a Focker-Planck equation with a “diffusion coeffi- Of disorder. It can also be seen from Eg5) that in the case
cient” D(ko). of low frequ.enc[es the typical path length of thq wave inside

the waveguide is of the order &f. In the opposite case of

RESULTS AND DISCUSSION short wavelengthéE — o, ky— ), the “average phase” ex
hibits much steeper growth, namelf®, as a function of
Equation(12) can only be solved numerically fét(x, £). frequency,

In a large system, however, where the number of states is an
extensive parameter, the density of phase distribution should
not depend on the spatial coordinate In the case of the <‘D(V)>2\/;C<Z
spatially homogeneouB(¢), Eqg.(12) reduces to

13
kg/SL o V4/3, (19

J where C= [5du exd —u%3] is a constant. It can be attrib-
£+ 2E+ 2D (ko) —|P(&)=Cy(D, E) (13) uted to the fact that waves with a short wavelength experi-
43 ence a lot of scattering events inside the waveguide. As a
~ . result, these waves stay longer in the waveguide and travel
Here Co(D,E) is a constant. It can be showi28] that  5erage distances much greater than the length of the wave-
Co(D,Eo) =N(Eo)/(DL), whereN(Eo) is the number of g iqe "Using Eqs(14) and(15), the homogeneous density of

states with the energl less thanE,. From Eq.(7), it fol-  phase distributioP(&) can be presented in the form
lows that the total phase is related to the constant on the

right-hand side of Eq(13) as N(E) ;{ 8
P(é)= z—— ex + E
(®)y=2mD(kg)Co(D,Eq)L. (14) (8 2D (ko) D (ko) ¢
Equation(13) should be supplemented by the renormaliza- x F du exp{ u—3+Eu) (20)
tion condition, D(kg) \ 6 )
f+md§ P(&)=1 (15) We plot P(£) in Fig. 1 for three different frequencies of 1
- ; Ghz[case(a)], 15 Ghz[case(b)], and 50 GhZcase(c)]. It is

_ clear from the figure, that the probability of acquiring a large
which provides an additional definition &,(D,E). Solving  phase inside the medium is much greater at higher frequen-
Eq. (13) together with Eq(15) we obtain cies.
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2 02 where 7 is expressed in terms of roots of the Bessel function
0.1 Jo(X) (»=~2m). Substituting parameters of RdR3] into
0 Eqg. (19 we find thatA »~6.58 Ghz, which corresponds to
-4 2 0 2 4 6 approximately three modes. This means that experimental
®) data obtained in Ref23] can be very well described by the
Phase quasi-1D approximation. Unfortunately, it is impossible to
4 make a comparison between our result for the density of
phase distribution given by Eq18) and the experimental
> data reported in Ref23]. The reason is that the probability
= 3 distribution in the paper by Sebbatt al. is presented as a
_‘.g function of the fluctuation of the phase from its ensemble
=S ol average valuéd® = o —(d), whereas ouP(®P) has the to-
3 tal phaseb as its argument. In additio®,(®) of Ref.[23] is
e computed using the cumulative phase measured at each fre-
§ 1 quency for every configuration and then averaged over the
“ whole frequency interval. In our case(®) is calculated for
a single frequency. We can, however, compare our analytical
0 expression for the total average phase with experimental
-20 -10 0 10 20 data. The right way to do that is to substitute value& o€,
©) Phase and e into Eq. (15 and then plok®) as a function of fre-

quency. The problem is that the value of the amplitude of the

FIG. 1. The “normalized” density of the phase distribution correlationsA is not known. Thus, we have to perform a fit
function P(®)=P(®)/[P¢/2D(ko)] as a function of® for three  of Eqg. (15) to experimental data, results of which are shown
different frequenciesa) »,=1Ghz, (b) »,=15Ghz, and(c) »3  in Fig. 2. Excellent agreement between the theory and ex-
=50 Ghz. periment, as seen in Fig. 2, is achieved for the valué of

=3.332. The amplitude of the correlatioAsis quite an im-

In order to understand how relevant our results are to th@ortant parameter, since it is an integral part of the scattering
measurements performed in waveguides with random scafean free path. It can also be used as an independent test of
terers, we will make a comparison to the experimental dat@ur results. The expression foin terms ofA in the 1D case
reported in Ref[23]. In this work measurements of the phasecan be found by applying the standard diagrammatic ap-
of microwave radiation transmitted through a sample of ranproach(see, for example, Refgl—4]), which gives the result
domly positioned;-in. polystyrene spheres:<3) at a vol- I=4/Ak§. Substituting the value oA found from the fit into
ume fraction of 0.52 were performed. The sample of lengththis formula, we obtain the value ¢&=1.23 cm at the fre-
L=110 cm was contained within a 7.6-cm-diam copper tubequency v=10 GHz. It is a reasonable figure, since it per-
and the frequency was swept from 3 to 26 GHz. From Egfectly supports the well-known res\tt,2] that the scattering
(1) it is possible to estimate the number of modes existing iimean free path is of the order of the size of scatterers. In the
this frequency window. The frequency spAm betweemnth  case of Ref[23] scatterers had the diameter equal to 1.27
and (h+1)th modes can be estimated as cm. These estimations provide an additional strong support
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of our initial assumption that the propagation of the electrotem. We have obtained the result that the average phase ex-
magnetic wave in a waveguide with randomly distributedhibits a crossover from linear to power-law behavior as a
dielectric scatterers can be simulated by the transport in thiinction of frequency. Excellent agreement is found between

quasi-1D random system. analytical and experimental results, thus supporting our ap-
proximation.
CONCLUSION
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