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Statistical properties of the cumulative phase of electromagnetic radiation
transmitted through a waveguide with random scatterers
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We calculate the probability distribution function and the average of the cumulative phase of electromag-
netic radiation transmitted through the waveguide with randomly positioned dielectric scatterers. The average
phase exhibits a crossover from linear to power-law behavior as a function of frequency. A detailed compari-
son with experimental results is made and a good agreement is found. Our results are consistent with the
well-known observation that the scattering mean free path is of the order of the size of scatterers.
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INTRODUCTION

The electromagnetic wave transmitted through rand
media is fully characterized by two equally important para
eters: amplitude and phase. While properties of the wav
amplitude and its intensity have acquired considerable at
tion over the past decade@1–23#, the phase has remained a
‘‘unexplored’’ quantity. Only recently have studies of stati
tics of the cumulative phase in microwave measureme
been reported@22,23#. It has been shown there that the pha
is not only central in the underlying wavelike property of t
transmitted signal as interference@24#, but that it may give
direct access to numerous indispensable transport pa
eters. Among those, to name a few, are the density-of-sta
phase, and group velocities. Following the density of ph
distribution as a function of sample thickness and frequen
one can also study the transition from the ballistic to
diffusive regime. To advance these investigations further
to fully understand the underlying physics behind the fu
tional behavior of the average phase and phase distribu
function found in the experiment, an analytical description
the phase statistics is needed. To our knowledge, no s
calculations have been given in the existing literature. T
purpose of the present work is to provide analytical analy
of the phase statistics of the electromagnetic radiation tra
mitted through a waveguide with randomly positioned
electric scatterers.

The general problem of finding the statistical characte
tics of the phase is rather complex theoretically. It is, ho
ever, possible to reformulate it in terms of a solvable mod
To accomplish this goal, let us look at the transport of
electromagnetic wave with longitudinal component of wa
vectork, propagating in a waveguide of lengthL. A distinc-
tive property of the waveguide of any geometry~rectangular,
cylindrical, etc.! is the existence of a discrete set of ‘‘tran
verse’’ ~TE and TM! eigenmodes@25#:

S v

c D 2

5k21S hn

R D 2

, ~1!

wherev is the angular frequency of thenth mode,R is the
571063-651X/98/57~3!/3574~5!/$15.00
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transverse dimension of the waveguide~the width or height
in the case of a rectangular waveguide and the radius in
case of a cylindrical tube!, c is the speed of the wave insid
the empty waveguide,n is a positive integer number, andh
is a parameter dependent up on the geometry of the w
guide. In general, there are an infinite number of such eig
modes in the empty waveguide, even though some of th
are suppressed due to symmetry. The incoming electrom
netic radiation~plane-wave or point-source! of wavelengthl
can be expanded in the complete set of eigenmodes
ensuring that all of these modes contribute to the wave tra
port; l is the characteristic transport length in this case. R
dom scatterers, when ‘‘placed’’ in the waveguide, m
renormalize some parameters in Eq.~1!, while the total num-
ber of eigenmodes does not change. However, trans
properties of the wave are seriously altered in the presenc
random scatterers. It is well known@1–5# that as the wave
travels through a random medium its coherent part dec
exponentially over a distance of the order of scattering m
free pathl due to successive scattering. At the same time
incoherent part builds up gradually and propagates di
sively. Since its phase is completely random and avera
out to zero, the total average phase consists only of the
perposition of phases of wavelets forming the coherent co
ponent. However, the majority of the eigenmodes contrib
ing to the coherent transport are ‘‘evanescent,’’ i.e., th
exist entirely within a thin layer of the order of severall ’s
from the input face of the waveguide. As the signal prop
gates deeper inside the waveguide, most of the ‘‘cohere
eigenmodes saturate and only a limited number of them e
at the output face of the waveguide. These considerat
have recently been tested using numerical simulations@26#,
where it has been found that only a single coherent m
survives at distances from the input surface much gre
than l . An important conclusion appropriate at this point
that under such conditions the waveguide of the length m
greater than the scattering mean free path effectively beh
as a quasi-one-dimensional random system.

An additional support of the conclusion made abo
comes from some specific features of the experimental p
3574 © 1998 The American Physical Society



m
0

r
ve
th
en

n
th
t

a

ro
st
om
n
ed
th
s
a

s

he
o
le
-
re
a

n

y
l
ne
o

re

la
e
th

le

-
g

w-

he

he

l-

nce
as-

po-
ave
pect
-

ical
n-
ro

rt.

g

ro
s in

p-
the

57 3575STATISTICAL PROPERTIES OF THE CUMULATIVE . . .
cedure. In a typical experiment, measurements are perfor
over the frequency window with width of the order of 20–3
GHz. It follows from Eq.~1! that only a finite number of
modes can exist in the restricted frequency interval. The
fore, if a detector is placed at the output face of the wa
guide or even outside of the random media, it captures
signal comprised of the finite number of transverse eig
modes.

In the present work we apply the quasi-one-dimensio
approximation for the electromagnetic wave transport in
waveguide with randomly positioned dielectric scatterers
obtain exact analytical results for the total average phase
the density of phase distribution. Our method is to perform
direct mapping of the quasi-one-dimensional~quasi-1D!
Maxwell equation onto the one-dimensional Schro¨dinger
equation with a continuous random potential. The Sch¨-
dinger equation itself can be converted to the stocha
equation for the spatial derivative of the local phase fr
which, finally, the general differential equation for the de
sity of the phase distribution function is derived. It is solv
explicitly for the total average phase and the density of
phase distribution in the limiting case when both of the
parameters are spatially homogeneous. A thorough comp
son between analytical results and experimental finding
included.

METHOD OF CALCULATION

Let us start with a cylindrical tube of lengthL and radius
R, filled with randomly positioned dielectric scatterers. T
cylinder is a preferred geometry here since it is used in m
laboratory setups. Our results are, nevertheless, applicab
a kind of geometry~rectangular, etc.!. Scatterers are consid
ered to be pointlike, which leads to the transport mean f
path being equal to the scattering mean free path in our c
This is incorrect when the size of scatterersd is of the order
of l. In the present work, however, we are interested i
frequency range for which the conditionl@d is always sat-
isfied. The plane electromagnetic wave impinges normall
the front surface of the tube and the transmitted signa
detected at its back surface. Following the above-mentio
considerations, we assume that only a finite number
‘‘transverse’’ eigenmodes is allowed in the tube and, the
fore, our problem is reduced to the propagation of a wave
a quasi-1D random system. In order to simplify the calcu
tion even further, we restrict ourselves to the simplest cas
a single mode in the waveguide. Under these conditions,
Fourier transform of the amplitude of the electric~magnetic!
field E(x,t) satisfies the wave equation

H ]2

]x2 1k0
2e~x!J E~x,v!50, ~2!

wherek05v/c. The randomness of the system is mode
by the ‘‘dielectric’’ constant e(x)5 ê1de(x), where ê
5e(12v), v is the filling fraction, ande represents the av
erage ‘‘dielectric’’ properties of the medium. The fluctuatin
part of the ‘‘dielectric constant’’de(x) is assumed to be a
Gaussian random variable with a zero mean:

^de~x!&50, ^de~x!de~x8!&5Ad~x2x8!, ~3!
ed

e-
-
e
-

al
e
o
nd
a

ic

-

e
e
ri-
is

st
to

e
se.

a

at
is
d
f
-

in
-
of
e

d

and the amplitude of the correlationsA}ê2d, where ^ &
means averaging over disorder. After employing the follo
ing substitution:

]E~x,v!

]x
5E~x,v! f ~x,v!,

E~x,v!5Ce*dx f~x,v!5CeF~v!, ~4!

Eq. ~2! reduces to the first-order Ricatti equation for t
function f (x,v),

d f~x,v!

dx
1 f 2~x,v!52k0

2e~x!. ~5!

From Eqs.~4! we can conclude thatf (x,v) is nothing but
the analog of the spatial derivative of the ‘‘local phase’’ t
wave acquires while propagating to a coordinatex in the
random medium, whereasF(v) can be viewed as a ‘‘total’’
or ‘‘cumulative phase.’’ In order to proceed with further ca
culations, we note that Eq.~5! is analogous to the 1D Schro¨-
dinger equation for a spinless particle of massm and energy
E propagating in the random potentialV(x),

d f~x,Ẽ!

dx
1 f 2~x,Ẽ!52@Ṽ~x!2Ẽ#, ~6!

where the same transformations as given by Eqs.~4! have
been performed. In Eq.~6! Ẽ54mE, Ṽ(x)54mV(x), and
Planck’s constant is set to unity. An important conseque
can be deduced from this analogy. It follows from quasicl
sics@27#, that the ‘‘number of states’’N(E), with the energy
E and energy densityr(E), is equal to

N~E!5E dE r~E!.
1

2p E dx k~x!5
1

2p
^F& Ṽ , ~7!

where^ &V means averaging with respect to the random
tential. Therefore, the cumulative phase of the classical w
propagating in the 1D random system, averaged with res
to random fluctuations, is directly proportional to the ‘‘num
ber of states’’ in the corresponding quantum-mechan
~QM! problem. Since it is known how to calculate the de
sity of states and the phase distribution for the 1D Sch¨-
dinger problem with random potential@28#, our next step is
to formulate our problem in terms of its QM counterpa
From the direct comparison of Eqs.~5! and ~6! we have

Ṽ~x!52 1
2 k0

2de~x!,

Ẽ5 1
2 k0

2ê, ~8!

while the potential-potential correlator takes the followin
form:

^Ṽ~x!Ṽ~x8!&5 1
4 k0

4Ad~x2x8!5D~k0!d~x2x8!. ~9!

An important difference between the propagation of Sch¨-
dinger particles and classical waves is that the latter occur
the ‘‘energy’’-dependent potential, as follows from Eqs.~8!.
This peculiarity leads to completely different statistical pro
erties of the phase of the classical waves as compared to
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Schrödinger particles. One should note that the states of
electromagnetic field are physically characterized by
wave vectork0 rather than the ‘‘energy’’E given by Eqs.
~8!. However, the number of states defined by Eq.~7! is
invariant with respect to the change of variables~8!. In other
words, the number of states as a function ofk0 can be ob-
tained from the result forN(Ẽ) by means of the simple sub
stitution into Eq.~8! in the formN(Ẽ)5N„Ẽ(k0)…. As will
be clear below, we only use the invariant quantityN(Ẽ) in
our analysis of the phase distribution. Therefore, we can
press the results in terms ofẼ and make use of the QM
analogy.

Instead of solving Eq.~6! directly for the ‘‘phase’’
f (x,Ẽ), we use it to derive the equation for the ‘‘density
phase distribution,’’

P~x,j!5^d„f ~x,Ẽ!2j…& Ṽ . ~10!

Therefore,P(x,j)dj is the probability thatf (x,Ẽ) lies in the
interval j, j1dj. After taking a partial derivative with re
spect to the coordinatex from P(x,j) and using Furutsu-
Novikov’s theorem@28#,

^A~x!B~x!&A5E dx8^A~x!A~x8!&K dB~x8!

dA~x8!L , ~11!

we obtain the desired equation forP(x,j),

]P~x,j!

]x
5

]

]j F S j212Ẽ12D~k0!
]

]j D P~x,kj!G .
~12!

This is a Focker-Planck equation with a ‘‘diffusion coef
cient’’ D(k0).

RESULTS AND DISCUSSION

Equation~12! can only be solved numerically forP(x,j).
In a large system, however, where the number of states i
extensive parameter, the density of phase distribution sh
not depend on the spatial coordinatex. In the case of the
spatially homogeneousP(j), Eq. ~12! reduces to

S j212Ẽ12D~k0!
]

]j D P~j!5C0~D,Ẽ!. ~13!

Here C0(D,Ẽ) is a constant. It can be shown@28# that
C0(D,E0)5N(E0)/(DL), where N(E0) is the number of
states with the energyẼ less thanE0 . From Eq.~7!, it fol-
lows that the total phase is related to the constant on
right-hand side of Eq.~13! as

^F& Ṽ52pD~k0!C0~D,E0!L. ~14!

Equation~13! should be supplemented by the renormaliz
tion condition,

E
2`

1`

dj P~j!51, ~15!

which provides an additional definition ofC0(D,Ẽ). Solving
Eq. ~13! together with Eq.~15! we obtain
e
e

x-

an
ld

e

-

P~j!5
C0

2
expF2

1

D~k0! S j3

6
1Ẽj D G

3E
2`

j

du expF 1

D~k0! S u3

6
1ẼuD G . ~16!

Making use of Eqs.~14! and ~15!, we finally arrive at the
following expression for̂ F(Ẽ)&:

^F~Ẽ!&5
A8pD~k0!L

*0
1`

du

Au
expF2

1

D~k0!
S u3

24
1ẼuD G . ~17!

We would like to mention that the integral in the denomin
tor of Eq. ~17! can be calculated exactly, with the result
integration expressed in terms of hypergeometric functio
The form of Eq.~17! is, however, more convenient for bot
the analytical estimation of limiting cases and numerical c
culations. Two important limiting cases, long-waveleng
and short-wavelength, can be distinguished. In the cas
long wavelengths~low frequencies!, Ẽ→0, k0→0, where the
wavelength is much larger than the scale of inhomogeneit
disorder should not have a significant impact on the cumu
tive phase, since waves hardly get scattered before lea
the waveguide. We obtain the linear growth of the ‘‘avera
cumulative phase’’ with a frequencyn,

^F~n!&.A2êk0L}n. ~18!

The numerical coefficient in Eq.~16! is indeed independen
of disorder. It can also be seen from Eq.~15! that in the case
of low frequencies the typical path length of the wave ins
the waveguide is of the order ofL. In the opposite case o
short wavelengths~Ẽ→`, k0→`!, the ‘‘average phase’’ ex-
hibits much steeper growth, namelyn4/3, as a function of
frequency,

^F~n!&.ApCS A

4 D 1/3

k0
4/3L}n4/3, ~19!

whereC5*0
`du exp@2u6/3# is a constant. It can be attrib

uted to the fact that waves with a short wavelength exp
ence a lot of scattering events inside the waveguide. A
result, these waves stay longer in the waveguide and tr
average distances much greater than the length of the w
guide. Using Eqs.~14! and~15!, the homogeneous density o
phase distributionP(j) can be presented in the form

P~j!5
N~Ẽ!

2D~k0!
expF2

1

D~k0! S j3

6
1Ẽj D G

3E
2`

j

du expF 1

D~k0! S u3

6
1ẼuD G . ~20!

We plot P(j) in Fig. 1 for three different frequencies of
Ghz @case~a!#, 15 Ghz@case~b!#, and 50 Ghz@case~c!#. It is
clear from the figure, that the probability of acquiring a lar
phase inside the medium is much greater at higher frequ
cies.
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In order to understand how relevant our results are to
measurements performed in waveguides with random s
terers, we will make a comparison to the experimental d
reported in Ref.@23#. In this work measurements of the pha
of microwave radiation transmitted through a sample of r
domly positioned1

2 -in. polystyrene spheres (e'3) at a vol-
ume fraction of 0.52 were performed. The sample of len
L5110 cm was contained within a 7.6-cm-diam copper tu
and the frequency was swept from 3 to 26 GHz. From
~1! it is possible to estimate the number of modes existing
this frequency window. The frequency spanDn betweennth
and (n11)th modes can be estimated as

FIG. 1. The ‘‘normalized’’ density of the phase distributio
function P̃(F)5P(F)/@P0/2D(k0)# as a function ofF for three
different frequencies~a! n151 Ghz, ~b! n2515 Ghz, and~c! n3

550 Ghz.
e
t-

ta

-

h
e
.

n

Dn'
hc

2pRAê
, ~21!

whereh is expressed in terms of roots of the Bessel funct
J0(x) (h'2p). Substituting parameters of Ref.@23# into
Eq. ~19! we find thatDn'6.58 Ghz, which corresponds t
approximately three modes. This means that experime
data obtained in Ref.@23# can be very well described by th
quasi-1D approximation. Unfortunately, it is impossible
make a comparison between our result for the density
phase distribution given by Eq.~18! and the experimenta
data reported in Ref.@23#. The reason is that the probabilit
distribution in the paper by Sebbahet al. is presented as a
function of the fluctuation of the phase from its ensem
average valuedF5F2^F&, whereas ourP(F) has the to-
tal phaseF as its argument. In addition,P(F) of Ref. @23# is
computed using the cumulative phase measured at each
quency for every configuration and then averaged over
whole frequency interval. In our case,P(F) is calculated for
a single frequency. We can, however, compare our analyt
expression for the total average phase with experime
data. The right way to do that is to substitute values ofL, c,
and e into Eq. ~15! and then plot̂ F& as a function of fre-
quency. The problem is that the value of the amplitude of
correlationsA is not known. Thus, we have to perform a
of Eq. ~15! to experimental data, results of which are show
in Fig. 2. Excellent agreement between the theory and
periment, as seen in Fig. 2, is achieved for the value oA
53.332. The amplitude of the correlationsA is quite an im-
portant parameter, since it is an integral part of the scatte
mean free path. It can also be used as an independent te
our results. The expression forl in terms ofA in the 1D case
can be found by applying the standard diagrammatic
proach~see, for example, Refs.@1–4#!, which gives the result
l 54/Ak0

2. Substituting the value ofA found from the fit into
this formula, we obtain the value ofl 51.23 cm at the fre-
quencyn510 GHz. It is a reasonable figure, since it pe
fectly supports the well-known result@1,2# that the scattering
mean free path is of the order of the size of scatterers. In
case of Ref.@23# scatterers had the diameter equal to 1.
cm. These estimations provide an additional strong sup

FIG. 2. The average cumulative phase as a function of
quency given by Eq.~1! ~solid line! and from Ref.@23# ~dotted line!
for the value ofA53.332.
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3578 57A. BULATOV, D. LIVDAN, AND JOSEPH L. BIRMAN
of our initial assumption that the propagation of the elect
magnetic wave in a waveguide with randomly distribut
dielectric scatterers can be simulated by the transport in
quasi-1D random system.

CONCLUSION

In summary, we have calculated the probability distrib
tion and the average of the cumulative phase of the elec
magnetic wave transmitted through the waveguide with r
domly positioned dielectric scatterers. Our calculations
based on the approximation of the waveguide with rando
distributed dielectric scatterers by the quasi-1D random s
o
,

et

ev

tt

.

ev
-

e

-
o-
-
e
ly
s-

tem. We have obtained the result that the average phase
hibits a crossover from linear to power-law behavior as
function of frequency. Excellent agreement is found betwe
analytical and experimental results, thus supporting our
proximation.
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